[1] Ahlswede R., Mauduit C., Sárközy A., Large Families of Pseudorandom Sequences ofkSymbols and Their Complexity-Part I, General Theory of Information Transfer and Combinatorics, LNCS 4123, Springer-Verlag, Berlin, 2006:293-307.
[2] Ahlswede R., Mauduit C., Sárközy A., Large Families of Pseudorandom Sequences ofkSymbols and Their Complexity-Part II, General Theory of Information Transfer and Combinatorics, LNCS 4123, SpringerVerlag, Berlin, 2006:308-325.
[3] Chen Z., Du X., Wu C., Pseudorandomness of certain sequences ofksymbols with length pq, J. Comput. Sci. Tech., 2011, 26(2):276-282.
[4] Dartyge C., Sárközy A., Large families of pseudorandom subsets formed by power residues, Unif. Distrib. Theory, 2007, 2(2):73-88.
[5] Gomez D., Winterhof A., Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hung., 2012, 64(2):161-168.
[6] Mak K., More constructions of pseudorandom sequences ofksymbols, Finite Fields Appl., 2014, 25(1):222-233.
[7] Mauduit C., Sárközy A., On finite pseudorandom binary sequences I:measure of pseudorandomness, the Legendre symbol, Acta Arith., 1997, 82(82):365-377.
[8] Mauduit C., Sárközy A., On finite pseudorandom sequences ofksymbols, Indag. Math., 2002, 13(1):89-101.
[9] Menezes A. J., van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, 1996.
[10] Tóth V., Extension of the notion of collision and avalanche effect to sequences ofksymbols, Period. Math. Hung., 2012, 65(2):229-238. |