鏁板瀛︽姤 鈥衡�� 2011, Vol. 54 鈥衡�� Issue (4): 581-590.DOI: 10.12386/A2011sxxb0059
寮犱笘鑺�1,2, 閽熸��鏉�2, 姝︿繆寰�1
鏀剁鏃ユ湡:
2009-07-02
淇洖鏃ユ湡:
2011-01-06
鍑虹増鏃ユ湡:
2011-07-15
鍙戝竷鏃ユ湡:
2011-07-15
鍩洪噾璧勫姪:
鍥藉鑷劧绉戝鍩洪噾(10771034, 10771191,10471124);绂忓缓鐪佽嚜鐒剁瀛﹀熀閲�(Z0511019, S0650009)
Shi Fang ZHANG1,2, Huai Jie ZHONG2, Jun De WU1
Received:
2009-07-02
Revised:
2011-01-06
Online:
2011-07-15
Published:
2011-07-15
鎽樿锛� 璁�H鍜�K鏄鏃犵┓缁村彲鍒咹ilbert绌洪棿, A ∈ B(H), B ∈ B(K), C ∈ B(K, H)涓�MC=(0ABC). 鏈枃缁欏嚭浜嗕笂涓夎绠楀瓙鐭╅樀MC鐨� Weyl 璋便�佹湰鎬ц氨銆佽氨銆佸乏璋便�佸彸璋便�佷笅鍗婃湰鎬ц氨銆佷笅鍗� Weyl璋� 鍜屼笂鍗奧eyl璋辩殑Fredholm 鎵板姩鐨勫畬鍏ㄥ埢鐢�.
涓浘鍒嗙被鍙�:
寮犱笘鑺�, 閽熸��鏉�, 姝︿繆寰�. 2 × 2-涓婁笁瑙掔畻瀛愮煩闃佃氨鐨凢redholm鎵板姩[J]. 鏁板瀛︽姤, 2011, 54(4): 581-590.
Shi Fang ZHANG, Huai Jie ZHONG, Jun De WU. Fredholm Perturbation of Spectra of 2 × 2-Upper Triangular Matrices[J]. Acta Mathematica Sinica, Chinese Series, 2011, 54(4): 581-590.
[1] Cao X. H., Browder spectra for upper triangular operator matrices, J. Math. Anal. Appl., 2008, 342: 477-484.[2] Cao X. H., Guo M. Z., Meng B., Semi-Fredholm spectrum and Weyl’s theory for operator matrices, Acta Mathematica Sinica, English Series, 2006, 22(1): 169-178.[3] Cao X. H., Meng B., Essential approximate point spectra and Weyl’s theorem for upper triangular operator matrices, J. Math. Anal. Appl., 2005, 304: 759-771.[4] Chen X. L., Zhang S. F., Zhong H. J., On the filling in holes problem for operator matrices, Linear Algebra Appl., 2009, 430: 558-563.[5] Djordjevi? D. S., Perturbations of spectra of operator matrices, J. Operator Theory, 2002, 48: 467-486.[6] Djordjevi? S. V., Han Y. M., Spectral continuity for operator matrices, Glasg. Math. J., 2001, 43: 487-490.[7] Djordjevi? S. V., Zguitti H., Essential point spectra of operator matrices though local spectral theory, J. Math. Anal. Appl., 2008, 338: 285-291.[8] Du H. K., Pan J., Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc., 1994, 121: 761-766.[9] Han J. K., Lee H. Y., Lee W. Y., Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc., 1999, 128: 119-123.[10] Hwang I. S., Lee W. Y., The boundedness below of 2 × 2 upper triangular operator matrices, Integr. Equ. Oper. Theory, 2001, 39: 267-276.[11] Lee W. Y., Weyl spectra of operator matrices, Proc. Amer. Math. Soc., 2000, 129: 131-138.[12] Li Y., Du H. K., The intersection of left and right essential spectra of 2 × 2 operator matrices, Bull. Lond. Math. Soc., 2004, 36: 811-819.[13] Li Y., Du H. K., The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl., 2006, 323: 1171-1183.[14] Li Y., Sun X. H., Du H. K., The intersection of left (right) spectra of 2 × 2 upper triangular operator matrices, Linear Algebra Appl., 2006, 418: 112-121.[15] Li Y., Sun X. H., Du H. K., A note on the left essential approximate point spectra of operator matrices, Acta Mathematica Sinica, English Series, 2007, 23(12): 2235-2240.[16] Zerouali E. H., Zguitti H., Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl., 2006, 324: 992-1005.[17] Zhang S. F., Zhong H. J., A note of Browder spectrum of operator matrices, J. Math. Anal. Appl., 2008, 344: 927-931.[18] Zhang S. F., , Zhong H. J., Jiang Q. F., Drazin spectrum of operator matrices on the Banach space, Linear Algebra Appl., 2008, 429: 2067-2075.[19] Zhang Y. N., Zhong H. J., Lin L. Q., Browder spectra and essential spectra of operator matrices, Acta Mathematica Sinica, English Series, 2008, 24: 947-954.[20] Zhang S. F., Wu Z. Y., Zhong H. J., Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra Appl., 2010, 433: 653-661.[21] Zhang S. F., Zhong H. J., Wu J. D., Spectra of Upper-triangular Operator Matrices, Acta Mathematica Sinica, Chinese Series, 2011, 54(1): 41-60. |
[1] | 钁g偗, 鏇瑰皬绾�, 鏉庢. CFI绠楀瓙涓�$UW_\Pi$鎬ц川[J]. 鏁板瀛︽姤, 2024, 67(4): 743-755. |
[2] | 璧栧▉瀹�, 闄堟粩, 閭撴槬婧�. 鎶曞奖瀵圭殑骞夸箟鎶曞奖鏉熺殑鎬ц川[J]. 鏁板瀛︽姤, 2024, 67(1): 1-20. |
[3] | 椹埄鏉�, 閮嚂, 寰愬皬宸�. 涓�绫诲崐鐩寸嚎涓奡chrödinger绠楀瓙閫嗕紶杈撶壒寰佸�奸棶棰樼殑绋冲畾鎬�[J]. 鏁板瀛︽姤, 2024, 67(1): 72-88. |
[4] | 瀛欓緳鍙�. $c_0$涓�$\varepsilon$-鑼冩暟鍙姞鏄犲皠鐨凥yers-Ulam绋冲畾鎬�[J]. 鏁板瀛︽姤, 2024, 67(1): 89-96. |
[5] | 瀛欓緳鍙�, 瀛欒嫳鍗�. c0姝i敟涔嬮棿鑼冩暟鍙姞鏄犲皠鐨勪竴涓敞璁�[J]. 鏁板瀛︽姤, 2023, 66(6): 1221-1226. |
[6] | 鍞愬媷, 鐜嬫柤骞�. 杈圭晫鏉′欢鍚氨鍙傛暟鐨凷-L绠楀瓙鍙嶉棶棰�[J]. 鏁板瀛︽姤, 2023, 66(5): 881-888. |
[7] | 绠¢噾鏋�, 鍞愯壋. Banach绌洪棿涓笁姝ラ殣寮忎腑鐐规硶鍒欑畻娉曠殑鐮旂┒鍙婂簲鐢�[J]. 鏁板瀛︽姤, 2023, 66(5): 971-980. |
[8] | 瀹嬪欢绾�, 姣涙案鍗�. 寮洪亶鍘哅arkov閾剧殑鎵板姩浼拌鍙婃敹鏁涢�熷害[J]. 鏁板瀛︽姤, 2023, 66(4): 599-616. |
[9] | 閽熷叴瀵�. 鎺у埗绯荤粺涓嶅彉鍘嬬殑鍑犵偣娉ㄨ[J]. 鏁板瀛︽姤, 2023, 66(4): 663-674. |
[10] | 鐜嬬传, 鐜嬬帀鏂�, 鐜嬬鍑�. Banach绌洪棿涓泦鍊煎害閲忓箍涔夐�嗛綈鎬у崟鍊奸�夋嫨鐨勫垽鎹�[J]. 鏁板瀛︽姤, 2023, 66(4): 727-738. |
[11] | 鏋椾附鐞�, 闃欎匠鍗�, 寮犱簯鍗�. Banach绌洪棿涓婄殑闂己涓嶅彲绾︾畻瀛�[J]. 鏁板瀛︽姤, 2023, 66(2): 209-222. |
[12] | 鍙ゆ尟涓�, 瀛欎附鑻�. Caputo鍨嬪垎鏁伴樁澶氱偣鍊奸棶棰樼殑璋遍厤缃硶[J]. 鏁板瀛︽姤, 2022, 65(6): 989-1002. |
[13] | 璋㈠繝鍏�, 钄¢挗. Banach绌洪棿涓婂彉鍒嗕笉绛夊紡闂鐨勬柊鎶曞奖绠楁硶[J]. 鏁板瀛︽姤, 2022, 65(5): 907-918. |
[14] | 闊╃惁, 瀵囦簹娆�, 闊╁▍妤�, 闄嗚嚜寮�. 闅忔満鍙橀噺鐨勯噺瀛愬垎瑙e拰澧為暱鍥剧殑娓愯繎璋卞垎甯�[J]. 鏁板瀛︽姤, 2022, 65(4): 657-664. |
[15] | 鐜嬫檽涓�, 闃挎媺鍧︿粨. 涓婁笁瑙掔畻瀛愮煩闃电殑灞�閮ㄨ氨鎬ц川鍙婂叾搴旂敤[J]. 鏁板瀛︽姤, 2022, 65(4): 625-638. |
闃呰娆℃暟 | ||||||
鍏ㄦ枃 |
|
|||||
鎽樿 |
|
|||||